References¶
- Bar16
Albert-László Barabási. Network science. Cambridge University Press, Cambridge, 2016. ISBN 9781107076266 1107076269. URL: http://barabasi.com/networksciencebook.
- BGLL21
Vincent D Blondel, Jen-Loup Guillaume, Renaud Lambiotette, and Etienne Lefebvre. Louvain method: finding communities in large network. 2021. URL: https://sites.google.com/site/findcommunities/home.
- Cam05
A Cameron. Microeconometrics : methods and applications. Cambridge University Press, Cambridge New York, 2005. ISBN 9780521848053.
- GPA18
Martin Gerlach, Tiago P Peixoto, and Eduardo G Altmann. A network approach to topic models. Science advances, 4(7):eaaq1360, 2018.
- HublerKBG08
Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. Metropolis algorithms for representative subgraph sampling. In 2008 Eighth IEEE International Conference on Data Mining. IEEE, December 2008. URL: https://doi.org/10.1109/icdm.2008.124, doi:10.1109/icdm.2008.124.
- LM14
Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International conference on machine learning, 1188–1196. PMLR, 2014.
- MHM18
Leland McInnes, John Healy, and James Melville. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
- MCCD13
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- SOD21
Copenhagen University Center for Social Data Science SODAS. About the center. 2021. URL: https://sodas.ku.dk/about/ (visited on 2021-11-23).
- AlanTInstitute21
Alan Turing Institute. Social data science. 2021. URL: https://www.turing.ac.uk/research/interest-groups/social-data-science (visited on 2021-11-23).
- OxfordIInstitute21
Oxford Internet Institute. Social data science. 2021. URL: https://www.oii.ox.ac.uk/research/social-data-science/ (visited on 2021-11-23).